1.6MHZ Zero-Drift CMOS Rail-to-Rail IO Opamp with RF Filter ### **Features** Single-Supply Operation from +2.0V ~ +5.5V • Rail-to-Rail Input / Output • Gain-Bandwidth Product: 1.6MHz (Typ@25°C) Low Offset Voltage: 5µV (Max@25°C) Quiescent Current: 180uA per Amplifier (Typ) • Operating Temperature: -40°C ~ +125°C Zero Drift: 0.027μV/°C (Typ) #### • Embedded RF Anti-EMI Filter • Small Package: GS8537 Available in SOT23-5 and SOP-8 Packages GS8538 Available in SOP-8 and MSOP-8 Packages GS8539 Available in SOP-14 and TSSOP-14 Packages ### **General Description** The GS853X amplifier is single/dual/quad supply, micro-power, zero-drift CMOS operational amplifiers, the amplifiers offer bandwidth of 1.6MHz, rail-to-rail inputs and outputs, and single-supply operation from 2.0V to 5.5V. GS853X uses auto-zero technique to provide very low offset voltage (less than 5µV maximum) and near zero drift over temperature. Low quiescent supply current of 180uA per amplifier and very low input bias current make the devices an ideal choice for low offset, low power consumption and high impedance applications. The GS853X offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity. The GS8537 Single is available in SOT23-5 and SOP-8 packages. And the GS8538 Dual is available in MSOP-8 and SOP-8 packages. The GS8539 Quad is available in Green SOP-14 and TSSOP-14 packages. The extended temperature range of -40oC to +125oC over all supply voltages offers additional design flexibility. # **Applications** - Transducer Application - Weight Scale Sensor - Electronics Scales - Handheld Test Equipment - Set-Top Boxes - Portable/Battery-Powered Applications - Temperature Sensors - Laptop/Notebook Computers/TFT Panels # Pin Configuration Figure 1. Pin Assignment Diagram # **Absolute Maximum Ratings** | Condition | Min | Max | | |--|----------|-----------------------|--| | Power Supply Voltage (V _{DD} to Vss) | -0.5V | +7.5V | | | Analog Input Voltage (IN+ or IN-) | Vss-0.5V | V _{DD} +0.5V | | | PDB Input Voltage | Vss-0.5V | +7V | | | Operating Temperature Range | -40°C | +125°C | | | Junction Temperature | +160 |)°C | | | Storage Temperature Range | -55°C | +150°C | | | Lead Temperature (soldering, 10sec) | +260°C | | | | Package Thermal Resistance (T _A =+25 ℃) | | | | | SOP-8, θ _{JA} | 125°C/W | | | | MSOP-8, θ _{JA} | 216°C/W | | | | SOT23-5, θ _{JA} | 190°C/W | | | | SC70-5, θ _{JA} | | CW | | | ESD Susceptibility | | | | | НВМ | 4.5KV | | | | MM | 350V | | | Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # Package/Ordering Information | MODEL | CHANNEL | ORDER NUMBER | PACKAGE
DESCRIPTION | PACKAGE
OPTION | MARKING
INFORMATION | | |---------------|---------|--------------|------------------------|--------------------|------------------------|--------| | 000527 | Cim ada | GS8537-TR | SOT23-5 | Tape and Reel,3000 | 8537 | | | GS8537 Single | Single | GS8537-SR | SOP-8 | Tape and Reel,4000 | GS8537 | | | CCOFOO | 500 D I | 20500 David | GS8538-SR | SOP-8 | Tape and Reel,4000 | GS8538 | | GS8538 | Dual | GS8538-MR | MSOP-8 | Tape and Reel,3000 | GS8538 | | | CCCEAO | 00500 | GS8539-TR | TSSOP-14 | Tape and Reel,3000 | GS8539 | | | GS8539 Quad | | GS8539-SR | SOP-14 | Tape and Reel,2500 | GS8539 | | ## **Electrical Characteristics** (At Vs = +5V, VcM = Vs/2, $RL = \infty$ connected to Vs/2, Vout = Vs/2 and TA = +25°C, unless otherwise noted.) | PARAMETER | SYMBOL CONDITIONS | | GS8537/8538/8539 | | | | |--------------------------------|--------------------------|--|------------------|------|------|-------------------| | PARAMETER | STWIBOL | STMBOL CONDITIONS | | MIN | MAX | UNITS | | INPUT CHARACTERISTICS | | | | | | | | Input Offset Voltage | Vos | $V_{CM} = V_S/2$ | 1 | -5 | 5 | μV | | Input Bias Current | I _B | | 100 | | | pA | | Input Offset Current | los | | 10 | | | pA | | Common-Mode Voltage Range | V _{CM} | V _S = 5.5V | -0.1 to +5.6 | | | V | | Common-Mode Rejection Ratio | CMRR | $V_S = 5V$, $V_{CM} = -0.1V$ to 5.1V | 120 | 100 | | dB | | Open-Loop Voltage Gain | A _{OL} | $Vs=5V$, $R_L = 10k\Omega$, $V_{CM} = -0.1V$ to 5.1V | 130 | 100 | | dB | | Input Offset Voltage Drift | $\Delta V_{OS}/\Delta_T$ | | 0.027 | 0.13 | | μV/°C | | OUTPUT CHARACTERISTICS | | | | | II . | | | 1 | V _{OH} | | 4.998 | 4.99 | | V | | | V _{OL} | $Vs=5V$, $RL = 100k\Omega$ | 1 | | 10 | mV | | Output Voltage Swing from Rail | V _{OH} | | 4.98 | 4.95 | | V | | | V _{OL} | Vs=5V, RL = 10kΩ | 10 | | 30 | mV | | | I _{SOURCE} | | 50 | | | | | Output Current | I _{SINK} | Vs=5V | 55 | | | mA | | POWER SUPPLY | | | | | | | | | | | 2.0 | | | V | | Operating Voltage Range | | | 5.5 | | | V | | Power Supply Rejection Ratio | PSRR | VS = +2.5V to +5.5V, VCM = +0.5V | 120 | 100 | | dB | | Quiescent Current / Amplifier | ΙQ | | 180 | | | uA | | DYNAMIC PERFORMANCE | <u> </u> | | <u>I</u> | | | | | Gain-Bandwidth Product | GBP | | 1.5 | | | MHz | | Slew Rate | SR | G = +1, 2V Output Step | 0.8 | | | V/µs | | NOISE PERFORMANCE | I . | | <u>I</u> | | | | | Input Voltage Noise | e _n p-p | f = 0.1Hz to 10Hz | 2.0 | | | μV _{P-P} | | | | f = 1kHz 96 | | | | | | Input Voltage Noise | e _n | f = 10kHz | 33 | | | nV√H | | SHUTDOWN | I | | 1 | 1 | I . | | | Shutdown Current / Amplifier | I_{Q_SD} | | 1 | | 5 | μA | | | l | I | İ. | l | I . | · | # Typical Performance characteristics At T_A =+25°C, V_S =+5V, and R_L = ∞ connected to V_S /2, unless otherwise noted. ## **Application Note** #### Size GS853X family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS853X family packages save space on printed circuit boards and enable the design of smaller electronic products. #### Power Supply Bypassing and Board Layout GS853X family series operates from a single 2.0V to 5.5V supply or dual $\pm 1.0V$ to $\pm 2.75V$ supplies. For best performance, a 0.1 μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1 μ F ceramic capacitors. #### Low Supply Current The low supply current (typical 180uA per channel) of GS853X family will help to maximize battery life. They are ideal for battery powered systems #### Operating Voltage GS853X family operates under wide input supply voltage (2.0V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-lon battery lifetime #### Rail-to-Rail Input The input common-mode range of GS853X family extends 100mV beyond the supply rails (V_{SS} -0.1V to V_{DD} +0.1V). This is achieved by using complementary input stage. For normal operation, inputs should be limited to this range. #### Rail-to-Rail Output Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS853X family can typically swing to less than 50mV from supply rail in light resistive loads (>10k Ω). #### Capacitive Load Tolerance The GS853X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance. Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error. The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_F and $R_{\rm ISO}$ serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response. Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy # **Typical Application Circuits** ### Differential amplifier The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS853X family. Figure 4. Differential Amplifier $$V_{\text{OUT}} = \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + \left(\frac{R_1 + R_2}{R_3 + R_4}\right) \frac{R_3}{R_1} V_{\text{REF}}$$ If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then $$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$ #### Low Pass Active Filter The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3 C_1)$. Figure 5. Low Pass Active Filter ## Instrumentation Amplifier The triple GS853X family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R_2/R_1 . The two differential voltage followers assure the high input impedance of the amplifier. Figure 6. Instrument Amplifier # Package Information MSOP-8 | Symbol | Dimen
In Milli | | Dimensions
In Inches | | | |--------|---------------------|-------|-------------------------|-------|--| | - | MIN | MAX | MIN | MAX | | | Α | 0.820 | 1.100 | 0.032 | 0.043 | | | A1 | 0.020 | 0.150 | 0.001 | 0.006 | | | A2 | 0.750 | 0.950 | 0.030 | 0.037 | | | b | 0.250 | 0.380 | 0.010 | 0.015 | | | С | 0.090 | 0.230 | 0.004 | 0.009 | | | D | 2.900 | 3.100 | 0.114 | 0.122 | | | E | 2.900 | 3.100 | 0.114 | 0.122 | | | E1 | 4.750 | 5.050 | 0.187 | 0.199 | | | e | 0.650 BSC 0.026 BSC | | | BSC | | | L | 0.400 | 0.800 | 0.016 | 0.031 | | | θ | 0° | 6° | 0° | 6° | | SOP-8 | Symbol | | nsions
meters | Dimensions
In Inches | | | |--------|----------|------------------|-------------------------|-------|--| | - | MIN | MAX | MIN | MAX | | | Α | 1.350 | 1.750 | 0.053 | 0.069 | | | A1 | 0.100 | 0.250 | 0.004 | 0.010 | | | A2 | 1.350 | 1.550 | 0.053 | 0.061 | | | b | 0.330 | 0.510 | 0.013 | 0.020 | | | С | 0.170 | 0.250 | 0.006 | 0.010 | | | D | 4.700 | 5.100 | 0.185 | 0.200 | | | E | 3.800 | 4.000 | 0.150 | 0.157 | | | E1 | 5.800 | 6.200 | 0.228 | 0.244 | | | e | 1.27 BSC | | 0.050 | BSC | | | L | 0.400 | 1.270 | 0.016 | 0.050 | | | 9 | 0° | 8° | 0° | 8° | | SOT23-5 SC70-5 | | Dimens | sions | Dimensions | | | |--------|----------------|-------|------------|-------|--| | Symbol | In Millimeters | | In Inches | | | | | Min | Max | Min | Max | | | Α | 0.900 | 1.100 | 0.035 | 0.043 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | A2 | 0.900 | 1.000 | 0.035 | 0.039 | | | b | 0.150 | 0.350 | 0.006 | 0.014 | | | С | 0.080 | 0.150 | 0.003 | 0.006 | | | D | 2.000 | 2.200 | 0.079 | 0.087 | | | E | 1.150 | 1.350 | 0.045 | 0.053 | | | E1 | 2.150 | 2.450 | 0.085 | 0.096 | | | е | 0.650T | ΥP | 0.026T | ΥP | | | e1 | 1.200 | 1.400 | 0.047 | 0.055 | | | L | 0.525R | EF | 0.021R | EF | | | L1 | 0.260 | 0.460 | 0.010 | 0.018 | | | θ | 0° | 8° | 0° | 8° | | SOP-14 RECOMMENDED LAND PATTERN (Unit: mm) | Symbol | Dimen | Dimensions In Millimeters | | | Dimensions In Inches | | | |--------|-------|---------------------------|------|-----------|----------------------|-------|--| | Symbol | MIN | MOD | MAX | MIN | MOD | MAX | | | Α | 1.35 | | 1.75 | 0.053 | | 0.069 | | | A1 | 0.10 | | 0.25 | 0.004 | | 0.010 | | | A2 | 1.25 | | 1.65 | 0.049 | | 0.065 | | | A3 | 0.55 | | 0.75 | 0.022 | | 0.030 | | | b | 0.36 | | 0.49 | 0.014 | | 0.019 | | | D | 8.53 | | 8.73 | 0.336 | | 0.344 | | | E | 5.80 | | 6.20 | 0.228 | | 0.244 | | | E1 | 3.80 | | 4.00 | 0.150 | | 0.157 | | | е | | 1.27 BSC | | 0.050 BSC | | | | | L | 0.45 | | 0.80 | 0.018 | | 0.032 | | | L1 | | 1.04 REF | | 0.040 REF | | | | | L2 | | 0.25 BSC | | 0.01 BSC | | | | | R | 0.07 | | | 0.003 | | | | | R1 | 0.07 | | | 0.003 | | | | | h | 0.30 | | 0.50 | 0.012 | | 0.020 | | | θ | 0° | | 8° | 0° | | 8° | | | | | | | | | | | ## TSSOP-14 | | Dimensions | | | | | |--------|----------------|----------|------|--|--| | Sumbol | In Millimeters | | | | | | Symbol | MIN | TYP | MAX | | | | A | - | - | 1.20 | | | | A1 | 0.05 | - | 0.15 | | | | A2 | 0.90 | 1.00 | 1.05 | | | | b | 0.20 | - | 0.28 | | | | С | 0.10 | - | 0.19 | | | | D | 4.86 | 4.96 | 5.06 | | | | E | 6.20 | 6.40 | 6.60 | | | | E1 | 4.30 | 4.40 | 4.50 | | | | e | | 0.65 BSC | | | | | L | 0.45 | 0.60 | 0.75 | | | | L1 | 1.00 REF | | | | | | L2 | 0.25 BSC | | | | | | R | 0.09 | - | - | | | | θ | 0° - 8° | | | | |