Features • Single-Supply Operation from +3V ~ +28V • Dual-Supply Operation from ±1.5V ~ ±14V Gain-Bandwidth Product: 1MHz (Typ) • Low Input Bias Current: 45nA (Typ) Low Offset Voltage: 5mV (Max) • Quiescent Current: 120µA per Amplifier (Typ) Operating Temperature: -25°C ~ +85°C # General Description The LM321/358/324 family have a high gain-bandwidth product of 1MHz, a slew rate of 0.2V/µs, and a quiescent current of 120µA/amplifier at 5V. The LM321/358/324 family is designed to provide optimal performance in low voltage and low noise systems. The maximum input offset voltage is 5mV for LM321/358/324 family. The operating range is from 3V to 28V. The LM321 single is available in Green SOT-23-5 package. The LM358 Dual is available in Green SOP-8 and MSOP-8 packages. The LM324 Quad is available in Green SOP-14 package. # **Applications** - Walkie-Talkie - Battery Management Solution - Transducer Amplifiers - Summing Amplifiers - Multivibrators - Oscillators - Portable Systems **Small Package:** LM321 Available in SOT23-5 Package LM324 Available in SOP-14 Package LM358 Available in SOP-8 and MSOP-8 Packages ### Pin Configuration Figure 1. Pin Assignment Diagram # **Absolute Maximum Ratings** | Condition | Symbol | Max | |-----------------------------|---------------|------------------| | Power Supply Voltage | Vcc | \pm 16V or 32V | | Differential input voltage | $V_{I(DIFF)}$ | 32V | | Input Voltage | VI | -0.3V~32V | | Operating Temperature Range | Topr | -25°C ~+85°C | | Storage Temperature Range | Tstg | -65°C ~+150°C | Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. # Package/Ordering Information | MODEL | CHANNEL | ORDER NUMBER | PACKAGE
DESCRIPTION | PACKAGE
OPTION | MARKING
INFORMATION | |--------|---------|--------------|------------------------|--------------------|------------------------| | LM321 | Single | LM321-TR | SOT23-5 | Tape and Reel,3000 | LM321 | | I MOEO | Durel | LM358-SR | SOP-8 | Tape and Reel,4000 | LM358 | | LM358 | Dual | LM358-MR | MSOP-8 | Tape and Reel,3000 | LM358 | | LM324 | Quad | LM324-SR | SOP-14 | Tape and Reel,2500 | LM324 | March 2020-REV_V3 ## **Electrical Characteristics** (At $V_S = +14V$, $T_A=25$ °C, unless otherwise noted.) | | | | LM321/358/324 | | | | |--------------------------------|--------------------------|--|---------------|--------------------------|-------|---------| | PARAMETER | SYMBOL | CONDITIONS | TYP | MIN/MAX OVER TEMPERATURE | | | | | | | +25℃ | +25℃ | UNITS | MIN/MAX | | INPUT CHARACTERISTICS | | | | | | | | Input Offset Voltage | Vos | V _{CM} = V _S /2 | 0.4 | 5 | mV | MAX | | Input Bias Current | I _B | | 45 | | nA | TYP | | Input Offset Current | los | | 5 | | nA | TYP | | Common-Mode Voltage Range | V _{CM} | V _S = 5.5V | -0.1 to +4 | | V | TYP | | Common-Mode Rejection Ratio | CMRR | V _{CM} = 0V to Vs-1.5V | 90 | 70 | dB | MIN | | Open-Loop Voltage Gain | A _{OL} | $R_L = 5k\Omega$, $V_O = 1V$ to 11V | 100 | 85 | dB | MIN | | Input Offset Voltage Drift | $\Delta V_{OS}/\Delta_T$ | | 7 | | μV/°C | TYP | | OUTPUT CHARACTERISTICS | | | | | | | | | V _{OH} | $R_L = 2k\Omega$ | 11 | | V | MIN | | | V _{OL} | $R_L = 2k\Omega$ | 5 | 20 | mV | MAX | | Output Voltage Swing from Rail | V _{OH} | $R_L = 10k\Omega$ | 12 | 13 | ٧ | MIN | | | V _{OL} | $R_L = 10k\Omega$ | 5 | 20 | mV | MAX | | 0.1.10 | I _{SOURCE} | $R_L = 10\Omega$ to $V_S/2$ | 40 | 60 | mA | MAX | | Output Current | I _{SINK} | R _L - 1012 to V _S /2 | 40 | 60 | | | | POWER SUPPLY | | | | | | | | Oneseting Valters Banco | | | | 3 | ٧ | MIN | | Operating Voltage Range | | | | 28 | ٧ | MAX | | Power Supply Rejection Ratio | PSRR | $V_S = +5V \text{ to } +28V, V_{CM} = +0.5V$ | 100 | 70 | dB | MIN | | Quiescent Current / Amplifier | ΙQ | V _S = 28V, RL=∞ | 0.12 | 2.5 | mA | MAX | | DYNAMIC PERFORMANCE | 1 | | | | | | | Gain-Bandwidth Product | GBP | | 1 | | MHz | TYP | | Slew Rate | SR | G = +1, 2V Output Step | 0.2 | | V/µs | TYP | # Typical Performance characteristics March 2020-REV_V3 # **Application Note** #### Size LM321/358/324 family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the LM321/358/324 family packages save space on printed circuit boards and enable the design of smaller electronic products. #### Power Supply Bypassing and Board Layout LM321/358/324 family series operates from a single 3V to 28V supply or dual ± 1.5 V to ± 14 V supplies. For best performance, a 0.1 μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1 μ F ceramic capacitors. #### Low Supply Current The low supply current (typical 120µA per channel) of LM321/358/324 family will help to maximize battery life. #### Operating Voltage LM321/358/324 family operates under wide input supply voltage (3V to 28V). In addition, all temperature specifications apply from -25 °C to +85 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime. #### Capacitive Load Tolerance The LM321/358/324 family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create apole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance. Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error. The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response. Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy # Typical Application Circuits ### Differential amplifier The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using LM321/358/324 family. Figure 4. Differential Amplifier $$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$ If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then $$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$ ### Low Pass Active Filter The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$. Figure 5. Low Pass Active Filter ## Instrumentation Amplifier The triple LM321/358/324 family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier. Figure 6. Instrument Amplifier # Package Information SOP-8 | Symbol | 1 | Dimensions
In Millimeters | | sions
ches | |--------|----------|------------------------------|-------|---------------| | ., | MIN | MAX | MIN | MAX | | A | 1.350 | 1.750 | 0.053 | 0.069 | | A1 | 0.100 | 0.250 | 0.004 | 0.010 | | A2 | 1.350 | 1.550 | 0.053 | 0.061 | | b | 0.330 | 0.510 | 0.013 | 0.020 | | С | 0.170 | 0.250 | 0.006 | 0.010 | | D | 4.700 | 5.100 | 0.185 | 0.200 | | E | 3.800 | 4.000 | 0.150 | 0.157 | | E1 | 5.800 | 6.200 | 0.228 | 0.244 | | e | 1.27 BSC | | 0.050 | BSC | | L | 0.400 | 1.270 | 0.016 | 0.050 | | 9 | 0° | 8° | 0° | 8° | MSOP-8 | Symbol | Dimensions
In Millimeters | | Dimensions
In Inches | | |--------|------------------------------|-----------|-------------------------|-------| | - | MIN | MAX | MIN | MAX | | Α | 0.820 | 1.100 | 0.032 | 0.043 | | A1 | 0.020 | 0.150 | 0.001 | 0.008 | | A2 | 0.750 | 0.950 | 0.030 | 0.037 | | b | 0.250 | 0.380 | 0.010 | 0.015 | | С | 0.090 | 0.230 | 0.004 | 0.009 | | D | 2.900 | 3.100 | 0.114 | 0.122 | | E | 2.900 | 3.100 | 0.114 | 0.122 | | E1 | 4.750 | 5.050 | 0.187 | 0.199 | | e | 0.650 | 0.650 BSC | | BSC | | L | 0.400 | 0.800 | 0.016 | 0.031 | | θ | 0° | 6° | 0° | 6° | SOP-14 RECOMMENDED LAND PATTERN (Unit: mm) | Samela al | Dimen | Dimensions In Millimeters | | | Dimensions In Inches | | | |-----------|-------|---------------------------|------|-----------|----------------------|-------|--| | Symbol | MIN | MOD | MAX | MIN | MOD | MAX | | | Α | 1.35 | | 1.75 | 0.053 | | 0.069 | | | A1 | 0.10 | | 0.25 | 0.004 | | 0.010 | | | A2 | 1.25 | | 1.65 | 0.049 | | 0.065 | | | A3 | 0.55 | | 0.75 | 0.022 | | 0.030 | | | b | 0.36 | | 0.49 | 0.014 | | 0.019 | | | D | 8.53 | | 8.73 | 0.336 | | 0.344 | | | E | 5.80 | | 6.20 | 0.228 | | 0.244 | | | E1 | 3.80 | | 4.00 | 0.150 | | 0.157 | | | е | | 1.27 BSC | | 0.050 BSC | | | | | L | 0.45 | | 0.80 | 0.018 | | 0.032 | | | L1 | | 1.04 REF | | 0.040 REF | | | | | L2 | | 0.25 BSC | | | 0.01 BSC | | | | R | 0.07 | | | 0.003 | | | | | R1 | 0.07 | | | 0.003 | | | | | h | 0.30 | | 0.50 | 0.012 | | 0.020 | | | θ | 0° | | 8° | 0° | | 8° | | | | | | | | | | | SOT23-5 | Symbol | Dimensions
In Millimeters | | Dimensions
In Inches | | | |--------|------------------------------|-----------|-------------------------|-------|--| | • | MIN | MAX | MIN | MAX | | | Α | 1.050 | 1.250 | 0.041 | 0.049 | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | A2 | 1.050 | 1.150 | 0.041 | 0.045 | | | ь | 0.300 | 0.500 | 0.012 | 0.020 | | | c | 0.100 | 0.200 | 0.004 | 0.008 | | | D | 2.820 | 3.020 | 0.111 | 0.119 | | | E | 1.500 | 1.700 | 0.059 | 0.067 | | | E1 | 2.650 | 2.950 | 0.104 | 0.116 | | | e | 0.950 | 0.950 BSC | | BSC | | | e1 | 1.900 | 1.900 BSC | | BSC | | | L | 0.300 | 0.600 | 0.012 | 0.024 | | | θ | 0° | 8° | 0° | 8° | |